FUNCTIONAL ANALYSIS OF BRACON HEBETOR VENOM ON TARGET AND NON-TARGET INSECT CELL LINES

Main Article Content

Atif Manzoor
Zain UlAbdin
Hoor Shaina
Bruce A Webb
Amer Jamil

Abstract

Insect cell cultures are widely used in studies of insect cell physiology, toxicology, developmental biology and microbial pathology. The lethal effects of crude venom extracted from the ectoparasitic wasp Bracon hebetor were examined with three cultured insect cell lines; Spodoptera frugiperda (Sf9), Tribolium castaneum (TcA) and Aedes aegypti (Aag-2). Venom caused cells to round-up, swell and eventually die. Despite similar sensitivities and overlapping LC50 values [(0.00125-0.00695) venom reservoir equivalents (VRE)/µl], significant differences were noted at the onset of cytotoxicity among the three insect cell lines. Cells from the Tribolium castaneum (TcA) and Aedes aegypti (Aag-2) showed little sensitivity to the venom: 0.0046 VRE were needed to induce 50% mortality in TcA [50% lethal concentration (LC50) = 0.0046 VRE/µl], and 0.0069 VRE were needed to induce 50% mortality in Aag-2 [50% lethal concentration (LC50) = 0.0069 VRE/µl). Over 80% of the Sf9 cells were nonviable within 1 h after the addition of an LC99 dose of venom, whereas the other cells required a 5-10-fold longer incubation period to produce mortality above 50%.

Article Details

How to Cite
Manzoor, A., UlAbdin, Z., Shaina, H., Webb, B., & Jamil, A. (2017). FUNCTIONAL ANALYSIS OF BRACON HEBETOR VENOM ON TARGET AND NON-TARGET INSECT CELL LINES. Acta Entomologica Serbica, 22, 103-111. https://doi.org/10.5281/zenodo.1064667
Section
Articles
Author Biographies

Atif Manzoor, Department of Entomology, University of Agriculture, Faisalabad

PhD, Department of Entomology

Zain UlAbdin, Department of Entomology, University of Agriculture Faisalabad

Assistan Professor, Department of Entomology

Hoor Shaina, Department of Entomology, University of Agriculture Faisalabad

PhD, Department of Entomology

Bruce A Webb, Department of Entomology, University of Kentucky, Lexington

Professor, Department of Entomology

Amer Jamil, Department of Biochemistry, University of Agriculture Faisalabad

Professor, Department of Biochemistry

References

Abt, M., & Rivers, D. B. (2007). Characterization of phenoloxidase activity in venom from the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). Journal of Invertebrate Pathology, 94, 108-118.

Beard, R. L. (1978). Venoms of Braconidae. In: Bettini, S. (Ed.), Handbuch der Experimentellen Pharmakologie (Manual for Experimental Pharmacology). Arthropod Venoms, 48, 773-800.

Beard, R. L. (1952). The toxicology of Habrobracon venom: A study of a natural insecticide. Bulletin of the Connecticut Agricultural Experiment Station, 562, 1-27.

Cline, L. D., Press, J. W., & Flaherty, B. R. (1984). Preventing the spread of the Almond Moth (Lepidoptera: Pyralidae) from infested food debris to adjacent un-infested packages, using the Parasite Bracon hebetor (Hymenoptera: Braconidae). Journal of Economic Entomology, 77, 331-333.

Coudron, T. A., & Puttler, B. (1988). Response of natural and factitious hosts to the ectoparasite Euplectrus plathypenae (Hymenoptera: Eulophidae). Annual Entomological Society of. America, 81, 931-937.

Coudron, T. A. (1991). Host-regulating factors associated with parasitic Hymenoptera. In: Hedin, P.A. (Ed.), Naturally Occurring Pest Regulators, ASC Symposium Series. American Chemical Society, Washington, 449, 41-65.

Darwish, E., El-Shazly, M., & El-Sherif, H. (2003). The choice of probing sites by Bracon hebetor (Say) (Hymenoptera: Braconidae) foraging for Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Product Research, 39, 265-276.

Doury, G., Bigot, Y., & Periquet, G. (1997). Physiological and biochemical analysis of factors in the female venom gland and larval salivary secretions of the ectoparasitoid wasp Eupelmus orientalis. Journal of Insect Physiology, 43, 69-81.

Drenth, D. (1973). Susceptibility of different species of insects to an extract of the venom gland of the wasp Microbracon hebetor (Say). Toxicon, 12, 189-192.

Edwards, S., & Sernka, T.J. (1969). On the action of Bracon venom. Toxicon, 6, 303-305.

Feyereisen, R. (1995). Molecular biology of insecticide resistance. Toxicology Letters, 82/83, 83-90.

Finney, D. J. (1971). Probit Analysis, 3rd Edn. Cambridge University Press, 333 pp.

Gul, M., & Gulel, A. (1995): Parasitoid Bracon hebetor (Say.) (Hymenoptera: Braconidae) Õun biyolojisi ve konak larva buyukluÛunun verim ve eßey oranõ uzerine etkisi. Turkish Journal of Zoology, 19, 231-235.

Gurevitz, M. (2010). A deadly scorpion provides a safe pesticide. Science news. http://www.sciencedaily.com.

Heimpel, G.E., Antolin, M.F., Franqui, R.A., & Strand, M.R. (1997). Reproductive isolation and genetic variation between two ‘‘strains’’ of Bracon hebetor (Hymenoptera: Braconidae). Biological Control, 9, 149-156.

Khalil, M. S., Raza, A. B. M., Afzal, M., Aqueel, M. A., Khalil, H., & Hance, T. (2016). Effects of different host species on the life history of Bracon hebetor. Animal Biology, 66(3-4), 403-414.

Leng, P., Zhang, Z., Pan, G., & Zhao, M. (2011). Applications and development trends in biopesticides. African Journal of Biotechnology, 10(86), 19864-19873.

Piek, T., & Engels, E. (1969). Action of the venom of Microbracon hebetor Say on larvae and adults of Phzlosamia cynthia Hiibn. Comparative Biochemistry and Physiology, 28, 603-618.

Piek, T., & Thomas, R.T. (1969). Paralysing venoms of solitary wasps. Comparative Biochemistry and Physiology, 30(1), 13-31.

Piek, T. (1966). Site of action of venom of Microbracon hebetor (Say.) (Hymenoptera: Braconidae). Journal of Insect Physiology, 12, 561-568.

Piek, T.W., Spanjer, W., Njio, K.D., Veenendaal, R.L., & Mantel, P. (1974). Paralysis caused by the venom of the wasp Microbracon gelechiae. Journal of Insect Physiology, 20, 2307-2319.

Piek, T., & Spanjer, W. (1986). Chemistry and pharmacology of solitary wasp venoms. In: Venoms of Hymenoptera, Biochemical, Pharmacological and Behavioral Aspects, pp. 161-308.

Piek, T. (1986). Venoms of the Hymenoptera. Biochemical, pharmacological and Behavioural Aspects.Academic Press; London, UK, 570pp.
Pretty, J., & Bharucha, Z. P. (2015). Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects, 6(1), 152-182.

Quistad, G. B., Dennis, P. A., Skinner, W. S. (1992). Insecticidal activity of spider (Araneae), centipede (Chilopoda), scorpion (Scorpionida), and snake (Serpentes) venoms. Journal of Economic Entomology, 85, 33-39.

Rivers, D. B., Hink, W. F., & Denlinger, D. L. (1993). Toxicity of the venom from Nasonia vitripennis (Hymenoptera: Pteromalidae) toward fly hosts, non-target insects, different developmental stages, and cultured insect cells. Toxicon, 31(6), 755-765.

Rivers, D. B., Genco, M., & Sanchez, R. A. (1999). In vitro analysis of venom from the wasp Nasonia vitripennis: susceptibility of different cell lines and venom-induced changes in plasma membrane permeability. In Vitro Cellular & Developmental Biology-Animal, 35(2), 102-110.

Stoddart, M. J. (2011). Mammalian cell viability: methods and protocols. Humana Press, 240pp.

Tamashiro, M. (1971). A biological study of the venoms of two species of Bracon. Hawaii Agr. Exp. Sta. Tech. Bull., 70, 1-52.

Yu, D. S., van Achterberg, C., & Horstmann, K. (2012). Taxapad 2012–World Ichneumonoidae 2011. Taxonomy, Biology, Morphology and Distribution. On USB Flash drive. Ottawa, Ontario, Canada.

Zhang, Z., Ye, G.Y., Cai, J., & Hu, C. (2005). Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) toward the hemocytes of their natural hosts, non-target insects and cultured insect cells. Toxicon, 46(3), 337-349.